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Persistent homology is a powerful tool to compute, study and encode ef-
ficiently multiscale topological features of nested families of simplicial com-
plexes and topological spaces. It does not only provide efficient algorithms
to compute the Betti numbers of each complex in the considered families, as
required for homology inference in the previous section, but also encodes the
evolution of the homology groups of the nested complexes across the scales.

1. Filtrations

Definition 1.1 (Filtration). A filtration of a simplicial complex K is a
nested family of subcomplexes (Kr)r∈T , where T ⊂ R, such that for any
r, r′ ∈ T , if r 6 r′ then Kr ⊂ Kr′ , and K = ∪r∈TKr.

More generally, a filtration of a topological space M is a nested family of
subspaces (Mr)r∈T , where T ⊂ R, such that for any r, r′ ∈ T , if r 6 r′ then
Mr ⊂ Mr′ and, M = ∪r∈TMr. For example, if f : M → R is a function,
then the family Mr = f−1((−∞, r]), r ∈ R defines a filtration called the
sublevel set filtration of f .

Remark 1.2. (i) The subset T may be either finite or infinite.
(ii) In practical situations, the parameter r ∈ T can often be interpreted as

a scale parameter and filtrations classically used in TDA often belong
to one of the two following families.
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2 PERSISTENT HOMOLOGY

Example 1.3 (Filtrations Built on Top of Data). Given a subset X of
a compact metric space (M,ρ), the families of Rips-Vietoris complexes
(Rips(X, r))r∈R and and Čech complexes (Čech(X, r))r∈R are filtrations1.
Here, the parameter r can be interpreted as a resolution at which one con-
siders the data set X.

In particular, if X is a point cloud in Rd, thanks to the Nerve theorem,
the filtration (Čech(X, r))r∈R encodes the topology of the whole family of
unions of balls Xr = ∪x∈XB(x, r), as r goes from 0 to +∞.

Example 1.4 (Sublevel Sets Filtrations). Functions defined on the vertices
of a simplicial complex give rise to another important example of filtration:
let K be a simplicial complex with vertex set V and f : V → R. Then f
can be extended to all simplices of K by f([v0, · · · , vk]) = max16i6k f(vi)
for any simplex σ = [v0, · · · , vk] ∈ K. The family of subcomplexes Kr =
{σ ∈ K|f(σ) 6 r} defines a filtration call the sublevel set filtration of f .
Similarly, one can define the upperlevel set filtration of f .

In practice, even if the index set is infinite, all the considered filtrations are
built on finite sets and are indeed finite. For example, when X is finite, the
Vietoris-Rips complex Rips(X, r) changes only at a finite number of indices
r. This allows to easily handle them from an algorithmic perspective.

2. Starting with a Few Examples

Given a filtration Filt = (Fr)r∈T of a simplicial complex or a topological
space, the homology of Fr changes as r increases: new connected compo-
nents can appear, existing component can merge, loops and cavities can
appear or be filled, etc. Persistent homology tracks these changes, identifies
the appearing features and associates a life time to them. The resulting in-
formation is encoded as a set of intervals called a barcode or, equivalently, as
a multiset of points in R2 where the coordinate of each point is the starting
and end point of the corresponding interval.

Before giving formal definitions, we introduce and illustrate persistent
homology on three simple examples.

Example 2.1 (Smooth Real Function). Let f : [0, 1] → R be the function
of Figure 1 and let (Fr = f−1((−∞, r]))r∈R be the sublevel set filtration of
f .

(a1) All the sublevel sets of f are either empty or a union of interval, so the
only non trivial topological information they carry is their 0-dimensional
homology, i.e. their number of connected components. For r < a1, Fr
is empty, but at r = a1 a first connected component appears in Fa1 .
Persistent homology thus registers a1 as the birth time of a connected
component and start to keep track of it by creating an interval starting
at a1.

(a2) Then, Fr remains connected until r reaches the value a2 where a second
connected component appears. Persistent homology starts to keep track
of this new connected component by creating a second interval starting
at a2.

1we take here the convention that for r < 0, Rips(X, r) = Čech(X, r) = ∅
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Figure 1. The persistence barcode and the persistence di-
agram of a function f : [0, 1]→ R.

(a3) Similarly, when r reaches a3, a new connected component appears and
persistent homology creates a new interval starting at a3.

(a4) When r reaches a4, the two connected components created at a1 and a3

merges together to give a single larger component. At this step, persis-
tent homology follows the rule that this is the most recently appeared
component in the filtration that dies: the interval started at a3 is thus
ended at a4 and a first persistence interval encoding the lifespan of the
component born at a3 is created.

(a5) When r reaches a5, as in the previous case, the component born at a2

dies and the persistent interval (a2, a5) is created.
(a6) The interval created at a1 remains until the end of the filtration giving

rise to the persistent interval (a1, a6) if the filtration is stopped at a6,
or (a1,+∞) if r goes to +∞ (notice that in this later case, the filtration
remains constant for r > a6).

The obtained set of intervals encoding the span life of the different homolog-
ical features encountered along the filtration is called the persistence barcode
of f . Each interval (a, a′) can be represented by the point of coordinates
(a, a′) in R2 plane. The resulting set of points is called the persistence
diagram of f . Notice that a function may have several copies of the same in-
terval in its persistence barcode. As a consequence, the persistence diagram
of f is indeed a multi-set where each point has an integer valued multiplicity.
Last, for technical reasons that will become clear in the next section, one
adds to the persistence all the points of the diagonal ∆ = {(b, d) : b = d}
with an infinite multiplicity.

Example 2.2 (Surface in Space). Let now f : M → R be the function
of Figure 2 where M is a 2-dimensional surface homeomorphic to a torus,
and let (Fr = f−1((−∞, r]))r∈R be the sublevel set filtration of f . The 0-
dimensional persistent homology is computed as in the previous example,
giving rise to the red bars in the barcode. Now, the sublevel sets also carry
1-dimensional homological features.

(a1) When r goes through the height a1, the sublevel sets Fr that were home-
omorphic to two discs become homeomorphic to the disjoint union of a
disc and an annulus, creating a first cycle homologous to σ1 on Figure
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Figure 2. The persistence barcode and the persistence dia-
gram of the height function (projection on the z-axis) defined
on a surface in R3.

2. A interval (in blue) representing the birth of this new 1-cycle is thus
started at a1.

(a2) Similarly, when r goes through the height a2 a second cycle, homologous
to σ2 is created, giving rise to the start of a new persistent interval.
These two created cycles are never filled (indeed they span H1(M)) and
the corresponding intervals remains until the end of the filtration.

(a3) When r reaches a3, a new cycle σ3 is created.
(a4) This cycle is filled and thus dies at a4, giving rise to the persistence

interval (a3, a4).

So, now, the sublevel set filtration of f gives rise to two barcodes, one for
0-dimensional homology (in red) and one for 1-dimensional homology (in
blue). As previously, these two barcodes can equivalently be represented as
diagrams in the plane.

Example 2.3 (Offsets of a Point Cloud). In this last example we consider
the filtration given by a union of growing balls centered on the finite set of
points P, as pictured below. Notice that this is the sublevel set filtration of
the distance function to P, that is (Fr = d−1

P ((−∞, r]))r∈R. Thanks to the

Nerve Theorem, this filtration is homotopy equivalent to the Čech filtration
built on top of P.

a) b)

P
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a) For the radius r = 0, the union of balls is reduced to the initial finite
set of point, each of them corresponding to a 0-dimensional feature, i.e.
a connected component; an interval is created for the birth for each of
these features at r = 0.

b) Some of the balls started to overlap resulting in the death of some con-
nected components that get merged together; the persistence diagram
keeps track of these deaths, putting an end point to the corresponding
intervals as they disappear.

c) d)

c) New components have merged giving rise to a single connected com-
ponent and, so, all the intervals associated to a 0-dimensional feature
have been ended, except the one corresponding to the remaining compo-
nents; two new 1-dimensional features, have appeared resulting in two
new intervals (in blue) starting at their birth scale.

d) One of the two 1-dimensional cycles has been filled, resulting in its death
in the filtration and the end of the corresponding blue interval.

Persistence barcode

Persistence diagram

e)

e) all the 1-dimensional features have died, it only remains the long (and
never dying) red interval. As in the previous examples, the final barcode
can also be equivalently represented as a persistence diagram where ev-
ery interval (a, b) is represented by the the point of coordinate (a, b) in
R2. Intuitively the longer is an interval in the barcode or, equivalently
the farther from the diagonal is the corresponding point in the diagram,
the more persistent, and thus relevant, is the corresponding homological
feature across the filtration. Notice also that for a given radius r, the
k-th Betti number of the corresponding union of balls is equal of the
number of persistence intervals corresponding to k-dimensional homo-
logical features and containing r. So, the persistence diagram can be
seen as a multiscale topological signature encoding the homology of the
union of balls for all radii as well as its evolution across the values of r.
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3. Persistent Modules and Persistence Diagrams

Persistent diagrams can be formally and rigorously defined in a purely
algebraic way. This requires some care and we only give here the basic
necessary notions, leaving aside technical subtleties and difficulties.

Definition 3.1 (Persistence Module). A persistence module V over a subset
T ⊂ R of the real numbers is an indexed family of vector spaces (Vr | r ∈ T )
and a doubly-indexed family of linear maps (vrs : Vr → Vs | r 6 s) which
satisfy the composition law vst ◦ vrs = vrt whenever r 6 s 6 t, and where vrr
is the identity map on Vr.

Example 3.2. Let Filt = (Fr)r∈T be a filtration of a simplicial complex or
a topological space. Given an integer k > 0 and considering the homology
groups Hk(Fr) we obtain a family of vector spaces, and the inclusions irs :
Fr ↪→ Fs ,for r 6 s, induce linear maps (irs)∗ : Hk(Fr) → Hk(Fs) at the
homology level. Furthermore, these maps satisfy (irt )∗ = (ist ◦ irs)∗ = (ist )∗ ◦
(irs)∗ for all r 6 s 6 t.

In many cases, a persistence module can be decomposed into a direct sum
of intervals modules I(b,d) of the form

· · · → 0→ · · · → 0→ Z2 → · · · → Z2 → 0→ · · ·
where the maps Z2 → Z2 are identity maps while all the other maps are 0.
Denoting b (resp. d) the infimum (resp. supremum) of the interval of indices
corresponding to non zero vector spaces, such a module can be interpreted as
a feature that appears in the filtration at index b and disappear at index d.
When a persistence module V can be decomposed as a direct sum of interval
modules, one can show that this decomposition is unique up to reordering
the intervals (see [CdSGO16, Theorem 2.7]). As a consequence, the set of
resulting intervals is independent of the decomposition of V and is called
the persistence barcode of V.

Remark 3.3. As in the examples of the previous section, each interval (b, d)
in the barcode can be represented as the point of coordinates (b, d) in the
plane R2. The disjoint union of these points, together with the diagonal
∆ = {b = d} is a multi-set called the persistence diagram of V.

The following result gives sufficient conditions for a persistence module
to be decomposable as a direct sum of interval modules.

Theorem 3.4. Let V be a persistence module indexed by T ⊂ R. If T is
a finite set or if all the vector spaces Vr are finite-dimensional, then V is
decomposable as a direct sum of interval modules.

Proof. See [CdSGO16, Theorem 2.8]. �

As both conditions above are satisfied for the persistent homology of
filtrations of finite simplicial complexes, an immediate consequence of this
result is that the persistence diagrams of such filtrations are always well-
defined.

Unfortunately, Theorem 3.4 is not sufficient for our purposes of general
data analysis. Indeed, there exist compact sets whose offsets do not induce
pointwise finite-dimensional persistence modules, such as X = {0} ∪n>1
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Figure 3. The set X = {0} ∪n>1 {1/n} is compact, but
β0(X) = ∞ and its offsets (Xr)r>0 are naturally indexed by
the infinite set T = R.

{1/n} (see Figure 3). However, it is possible to show that persistence dia-
grams can be defined as soon as the following simple condition is satisfied.

Definition 3.5 (q-tameness). A persistence module V indexed by T ⊂ R
is q-tame if for any r < s in T , the rank of the linear map vrs : Vr → Vs is
finite.

Theorem 3.6 ([CdSGO16]). If V is a q-tame persistence module, then it
has a well-defined persistence diagram.

Remark 3.7. (i) Theorem 3.6 is pretty strong, since its shows that the di-
agram is well-defined, even though V may not be interval-decomposable.

(ii) Such a persistence diagram dgm(V) is the union of the points of the
diagonal ∆ of R2, counted with infinite multiplicity, and a multi-set
above the diagonal in R2 that is locally finite. Here, by locally finite
we mean that for any rectangle R with sides parallel to the coordinate
axes that does not intersect ∆, the number of points of dgm(V), counted
with multiplicity, contained in R is finite.

(iii) (Insights on q-tameness) One can check [CdSGO16, Corollary 2.2] that
the number of points in any rectangle [a, b] × [c, d] above the diagonal
(a 6 b 6 c 6 d) corresponds to rank(vcb)−rank(vdb )+rank(vda)−rank(vca).
Letting a → −∞ and d → ∞, we get that the number of points in the
quadrant (−∞, b] × [c,∞) is finite whenever c > b, explaining the term
q-tame.

The construction of persistence diagrams of q-tame modules is beyond
the scope of this lesson but it gives rise to the same notion as in the case of
decomposable modules. It can be done either by following the algebraic ap-
proach based upon the decomposability properties of modules, or by adopt-
ing a measure theoretic approach that allows to define diagrams as integer
valued measures on a space of rectangles in the plane. We refer the reader
to [CdSGO16] for more information. Although persistence modules encoun-
tered in practice are decomposable, the general framework of q-tame persis-
tence module plays a fundamental role in the mathematical and statistical
analysis of persistent homology.

Remark 3.8 (Diagram of a Filtration). A filtration Filt = (Fr)r∈T of a
simplicial complex or of a topological space is said to be tame if for any
integer k, the persistence module (Hk(Fr) | r ∈ T ) is q-tame. Notice that the
filtrations of finite simplicial complexes are always tame. As a consequence,
for any integer k a persistence diagram denoted dgmk(Filt) is associated to
the filtration Filt. When k is not explicitly specified and when there is no
ambiguity, it is usual to drop the index k in the notation and to talk about
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“the” persistence diagram dgm(Filt) of the filtration Filt. This notation has
to be understood as “dgmk(Filt) for some k”.

4. Metrics on the Space of Persistence Diagrams

To exploit the topological information and topological features inferred
from persistent homology, one needs to be able to compare persistence dia-
grams, i.e. to endow the space of persistence diagrams with a metric struc-
ture. Although several metrics can be considered, the most fundamental
one is known as the bottleneck distance.

Recall that a persistence diagram is the union of a discrete multi-set in the
half-plane above the diagonal ∆ and, for technical reasons that will become
clear below, of ∆ where the point of ∆ are counted with infinite multiplicity.

Definition 4.1 (Matching). A matching between two diagrams dgm1 and
dgm2 is a subset m ⊂ dgm1×dgm2 such that every points in dgm1 \∆ and
dgm2 \∆ appears exactly once in m.

In other words, for any p ∈ dgm1 \∆, and for any q ∈ dgm2 \∆, ({p} ×
dgm2) ∩m and (dgm1×{q}) ∩m each contains a single pair, see Figure 4.

Definition 4.2 (Bottleneck Distance). The bottleneck distance between
dgm1 and dgm2 is then defined by

db(dgm1,dgm2) = inf
matching m

max
(p,q)∈m

‖p− q‖∞.

d d = b

db(dgm1,dgm2)

b

Figure 4. A perfect matching and the bottleneck distance
between a blue and a red diagram. Notice that some points
of both diagrams are matched to points of the diagonal.

Remark 4.3. (i) The practical computation of the bottleneck distance
boils down to the computation of a perfect matching in a bipartite graph
for which classical algorithms can be used.
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(ii) The bottleneck metric is a L∞-like metric. It turns out to be the natural
one to express stability properties of persistence diagrams presented in
Section 5, but it suffers from the same drawbacks as the usual L∞ norms,
i.e. it is completely determined by the largest distance among the pairs
and do not take into account the closeness of the remaining pairs of
points. A variant, to overcome this issue, the so-called Wasserstein
distance between diagrams is sometimes considered. Given p > 1, it is
defined by

Wp(dgm1,dgm2)p = inf
matching m

∑
(p,q)∈m

‖p− q‖p∞.

Useful stability results for persistence in the metric Wp exist among the
literature, but they rely on assumptions that make them consequences
of the stability results in the bottleneck metric.

5. Stability

5.1. A General Result. A fundamental property of persistence homology
is that persistence diagrams of filtrations built on top of data sets turn out to
be very stable with respect to some perturbations of the data. To formalize
and quantify such stability properties, we first need to precise the notion of
perturbation that are allowed.

Rather than working directly with filtrations built on top of data sets,
it turns out to be more convenient to define a notion of proximity between
persistence module from which we will derive a general stability result for
persistent homology. Then, most of the stability results for specific filtra-
tions will appear as a consequence of this general theorem. To avoid techni-
cal discussions, from now on we assume, without loss of generality, that the
considered persistence modules are indexed by R.

Definition 5.1 (Homomorphism of Persistence Modules). Let V,W be two
persistence modules indexed by R. Given δ ∈ R, a homomorphism of degree
δ between V and W is a collection Φ of linear maps φr : Vr →Wr+δ, for all
r ∈ R such that the following diagram commutes:

Vr
vrs //

φr

""

Vs
φs

""
Wr+δ

wr+δs+δ

// Ws+δ

That is, for all r 6 s, φs ◦ vrs = wr+δs+δ ◦ φr.

An important example of homomorphism of degree δ is the shift endo-
morphism 1δV which consists of the families of linear maps φr = vrr+δ. Notice
also that homomorphisms of persistence modules can naturally be composed:
the composition of a homomorphism Ψ of degree δ between U and V and
a homomorphism Φ of degree δ′ between V and W naturally gives rise to a
homomorphism ΦΨ of degree δ + δ′ between U and W.
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Definition 5.2. Let δ > 0. Two persistence modules V,W are δ-interleaved
if there exists two homomorphism of degree δ, Φ, from V to W and Ψ, from
W to V such that ΨΦ = 12δ

V and ΦΨ = 12δ
W.

Vr−δ
vr−δr

//

vr−δr+δ

++

φr−δ

!!

Vr

φr

!!

vrr+δ

// Vr+δ

Wr−δ
wr−δr //

wr−δr+δ

33

ψr−δ

==

Wr

wrr+δ //

ψr

==

Wr+δ

Although it does not define a metric on the space of persistence modules,
the notion of closeness between two persistence modules may be defined as
the smallest non negative δ such that they are δ-interleaved. Moreover, it
allows to formalize the following fundamental result.

Theorem 5.3 (Stability of Persistence). Let V and W be two q-tame per-
sistence modules. If V and W are δ-interleaved for some δ > 0, then

db(dgm(V),dgm(W)) 6 δ.

Proof. See [CdSGO16]. �

Remark 5.4. One can actually show that there is an isometry between
q-tame persistence modules — a purely algebraic construction —, and per-
sistence diagrams — points above the diagonal — [CdSGO16]. Indeed,
defining the interleaving distance as

di(V,W) = inf {δ > 0|V and W are δ-interleaved} ,
we have, for all q-tame persistence modules V and W,

db(dgm(V),dgm(W)) = di(V,W).

5.2. Stability for Functions. Although purely algebraic and rather ab-
stract, this result is an efficient tool to easily establish concrete stability
results such as the following.

Definition 5.5 (q-Tame Function). Let f : M → R be a real-valued func-
tions defined on a topological space M . We say that f is q-tame if the
sublevel sets filtrations of f induces a q-tame module at the homology level.

Proposition 5.6. If f : M → R is continuous and M is finitely triangulable
(i.e. homeomorphic to a finite simplicial complex), then f is q-tame.

Proof. Fpr simplicity, let us write Mr = f−1((−∞, r]), for r ∈ R. For all
b < c, we must show that H(Mb) → H(Mc) has finite rank. Begin with
any finite triangulation of M , and subdivide it repeatedly until no simplex
meets both f−1(b) and f−1(c). If we define K to be the union of the closed
simplices which meet Mb, then we have

Mb ⊂ K ⊂Mc,
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and hence the factorization

H(Mb)→ H(K)→ H(Mc).

Since K is (a geometric realization of) a finite simplicial complex, H(K) is
finite dimensional and so H(Mb)→ H(Mc) has finite rank. �

Theorem 5.7. Let f, g : M → R be q-tame. Then for any integer k,

db(dgmk(f),dgmk(g)) 6 ‖f − g‖∞ = sup
x∈M
|f(x)− g(x)|

where dgmk(f) (resp. dgmk(g)) is the persistence diagram of the persistence
module (Hk(f

−1(−∞, r]))|r ∈ R) (resp. (Hk(g
−1(−∞, r]))|r ∈ R)) where

the linear maps are the one induced by the canonical inclusion maps between
sublevel sets.

Proof. Denoting δ = ‖f − g‖∞ we have that for any r ∈ R, f−1(−∞, r]) ⊂
g−1(−∞, r + δ]) and g−1(−∞, r]) ⊂ f−1(−∞, r + δ]). This interleaving
between the sublevel sets of f induces a δ-interleaving between the persis-
tence modules at the homology level and the result follows from the direct
application of Theorem 5.3. �

5.3. Stability for Spaces. It sometimes occurs in that one has to compare
data sets that are not sampled from the same ambient space. Fortunately,
the notion of Hausdorff distance can be generalized to the comparison of any
pair of compact metric spaces, giving rise to the notion of Gromov-Hausdorff
distance.

Two compact metric spaces (M1, ρ1) and (M2, ρ2) are isometric if there
exists a bijection φ : M1 →M2 that preserves distances, i.e. ρ2(φ(x), φ(y)) =
ρ1(x, y) for any x, y ∈ M1. The Gromov-Hausdorff distance measures how
far two metric space are from being isometric.

Definition 5.8. The Gromov-Haudorff distance dGH(M1,M2) between two
compact metric spaces is the infimum of the real numbers r > 0 such that
there exists a metric space (M,ρ) and two compact subspaces C1, C2 ⊂ M
that are isometric to M1 and M2 and such that dH(C1, C2) 6 r.

Theorem 5.3 also implies a stability result for the persistence diagrams of
filtrations built on top of data.

Theorem 5.9. Let X and Y be two compact metric spaces and let Filt(X)
and Filt(Y) be the Vietoris-Rips of Čech filtrations built on top X and Y.
Then

db (dgm(Filt(X)),dgm(Filt(Y))) 6 2 dGH(X,Y),

where dgm(Filt(X)) and dgm(Filt(Y)) denote the persistence diagram of the
filtrations Filt(X) and Filt(X).

Proof. See [CdSO14, Theorem 5.2]. �

Remark 5.10. (i) This bound is worst-case tight. Indeed, take X = {0, 1} ⊂
R and Y = {0, 1 + 2ε}, for ε > 0 (see Figure 6a). Then dGH(X,Y) = ε,
dgm0(Filt(X)) = {(0,∞), (0, 1)} and dgm0(Filt(Y)) = {(0,∞), (0, 1 +
2ε)}, so that

db (dgm0(Filt(X)),dgm0(Filt(Y))) = ε = 2 dGH(X,Y).
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A B

dGH(A,B)

Figure 5. The Gromov-Hausdorff distance between A,B ⊂
R2. A can been rotated — this is an isometric embedding of
A in the plane — to reduce its Hausdorff distance to B. As
a consequence, dGH(A,B) < dH(A,B) in this case.

X = 1

Y =
1 + 2ε

(a)

X =
1

Y =

1

1

1 1

2

(b)

Figure 6. Discussion on the tightness of Theorem 5.9.

(ii) In general, this is only an upper bound. Indeed, write

X = {(0, 0), (1, 0), (1/2,
√

3/2)} ⊂ R2

and Y = {−1, 0, 1} (see Figure 6b). Then dGH(X,Y) = 1/2, while

dgm0(Filt(X)) = {(0,∞), (0, 1), (0, 1)} = dgm0(Filt(Y)),

so that

db (dgm0(Filt(X)), dgm0(Filt(Y))) = 0.

(iii) The proofs never use the triangle inequality! The previous approach and
results easily extend to other settings like, e.g. spaces endowed with a
similarity measure.

(iv) As we already noticed in Example 2.3, the persistence diagrams can
be interpreted as multiscale topological features of X and Y. In addi-
tion, Theorem 5.9 tells us that these features are robust with respect to
perturbations of the data in the Gromov-Hausdorff metric.
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6. Rates of Convergence for Random Point Clouds

Persistence homology by itself does not take into account the random
nature of data and the intrinsic variability of the topological quantity they
infer. We now present a statistical approach to persistent homology, which
means that we consider data as generated from an unknown distribution.

6.1. Minimax Upper Bound. Assume that we observe an i.i.d. n-sample
Xn = {X1, . . . , Xn} in a metric space (M,ρ) drawn from an unknown prob-
ability measure µ, whose support is a compact set denoted by Xµ.

Let Filt(Xµ) and Filt(X̂) be two filtrations defined on Xµ and X̂. Starting
from Theorem 5.9, a natural strategy for estimating the persistent homology

of Filt(Xµ) is to consider that of Filt(X̂), where X̂ is an estimator of Xµ,

meaning that dGH(Xµ, X̂) is small.

Remark 6.1. Note that in some cases the space M can be unknown and
the observations X1 . . . , Xn are then only known through their pairwise dis-
tances (ρ(Xi, Xj))16i,j6n. The use of the Gromov-Hausdorff distance allows

us to consider this set of observations as an abstract metric space of cardi-
nality n, independently of the way it is embedded in M .

Definition 6.2 ((a, b)-Standard Measure). The distribution µ is said to be
(a, b)-standard if for all x ∈ supp(µ) and all r > 0,

µ (B(x, r)) > min(arb, 1).

The finite set Xn := {X1, . . . , Xn} is a natural estimator of the support
Xµ. In several contexts discussed in the following, Xn shows optimal rates of
convergence to Xµ with respect to the Hausdorff distance. A slight variant
of this assumption has already been used in the previous lessons.

Definition 6.3 (Statistical Model). We let PM,a,b denote the set of Borel
probability distributions µ over (M,ρ) such that

– Xµ = suppµ is compact;
– µ is (a, b)-standard.

The following result gives an upper bound for the rate of convergence of
persistence diagrams for (a, b)-standard measures.

Theorem 6.4. If µ is (a, b)-standard on (M,ρ), then :

(i) For all ε > 0,

P (db (dgm(Filt(Xµ)),dgm(Filt(Xn))) > ε) 6 min

(
2b

aεb
exp(−naεb), 1

)
.

(ii) For n large enough,

sup
µ∈PM,a,b

Eµn [db(dgm(Filt(Xµ)),dgm(Filt(Xn)))] 6 Ca,b

(
log n

n

)1/b

.
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Proof. To get (i), we apply the stability of persistence for spaces Theorem 5.9
to get

P (db (dgm(Filt(Xµ)),dgm(Filt(Xn))) > ε) 6 P (dGH (Xµ,Xn) > ε/2)

6 P (dH (Xµ,Xn) > ε/2)

6 min

(
2b

aεb
exp(−naεb), 1

)
,

where the last inequality follows from a packing argument, as already de-
tailed in the previous lessons. Moving to the proof of (ii), we use Fubini’s
theorem to write

Eµn [db(dgm(Filt(Xµ)), dgm(Filt(Xn)))]

=

∫ ∞
0

P (db(dgm(Filt(Xµ)), dgm(Filt(Xn))) > ε) dε.

Let εn = 4
(

logn
an

)1/b
. By bounding the probability inside this integral by

one on [0, εn], we get

Eµn
[
db(dgm(Filt(Xµ)), dgm(Filt(X̂n)))

]
6 εn +

∫ ∞
εn

8b

a
ε−b exp(−naεb/4b)dε

6 εn +
4n2b

b
(na)−1/b

∫ ∞
logn

u1/b−2 exp(−u)du.

We now distinguish two cases.

If b > 1
2 : then u1/b−2 6 (log n)1/b−2 for all u > log n and then

E
[
db(dgm(Filt(Xµ)),dgm(Filt(X̂n)))

]
6 εn + 4

2b

b

(
log n

n

)1/b

(log n)−2

6 Ca,b

(
log n

n

)1/b

,

where Ca,b only depends only a and b.

If 0 < b < 1
2 : we let p := b1/bc and un := log n. Using iterated integrations by parts

yields∫ ∞
un

u1/b−2 exp(−u)du

= u1/b−2
n exp(un) + (

1

b
− 2)u1/b−3

n exp(un) + · · ·+

+

p∏
i=2

(
1

b
− i
)
u1/b−p
n exp(un) +

∫ ∞
logn

u1/b−p−1 exp(−u)du

6 C ′a,b
(log n)1/b−2

n
,

where C ′a,b only depends only a and b.

Thus, the expected loss bound holds for all b > 0, yielding the result.
�
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6.2. Minimax Lower Bound. Let us recall Le Cam’s Lemma.

Lemma 6.5 (Le Cam). Let Q be a set of probability distributions, and θ :
Q → Θ be a parameter of interest, where (Θ, `) is a metric space.
Then for all Q,Q′ ∈ Q,

inf
θ̂

sup
Q∈Q

EQn`
(
θ(Q), θ̂n

)
>

1

2
`
(
θ(Q), θ(Q′)

) (
1− TV(Q,Q′)

)n
,

where θ̂n = θ̂n(X1, . . . , Xn) ranges among all the measurable maps θ̂n :
X n → Θ based on an i.i.d. n-sample.

Theorem 6.6. Assume that there exists a non isolated point x in M and
consider any sequence (xn)n ∈ (M \ {x})N such that ρ(x, xn) 6 (an)−1/b.

Then for all estimator d̂gmn = d̂gmn(X1, . . . , Xn),

lim inf
n→∞

ρ(x, xn)−1 sup
µ∈PM,a,b

Eµn
[
db(dgm(Filt(Xµ)), d̂gmn)

]
> e−1/4.

Remark 6.7. Consequently, the estimator dgm(Filt(Xn)) is minimax op-
timal on the space PM,a,b up to a logarithmic term as soon as we can find
a non-isolated point in M and a sequence (xn) in M such that ρ(xn, x) ∼
(an)−1/b. This is obviously the case for the Euclidean space Rd.

Proof. We will apply Le Cam’s lemma with model Q = PM,a,b, parameter
of interest θ(µ) = dgm(Filt(Xµ)) in the space Θ of persistence diagrams of
q-tame modules endowed with distance ` = db.

To prove the lower bound, it will be sufficient to consider two Dirac dis-
tributions. We let µ0 = δx be the Dirac distribution on X0 := {x}. It is
clear that µ0 ∈ PM,a,b. Let µ1,n be the distribution 1

nδxn + (1− 1
n)µ0. The

support of µ1,n is denoted X1,n := {x, xn}. Note that for all n > 2 and
r 6 ρ(x, xn),

µ1,n (B(x, r)) = 1− 1

n
>

1

2
>

1

2ρ(x, xn)b
rb > arb

and

µ1,n (B(xn, r)) =
1

n
=

1

nρ(x, xn)b
rb > arb.

Moreover, for r > ρ(x, xn), µ1,n (B(x, r)) = µ1,n (B(xn, r)) = 1. Thus, for
all r > 0 and x ∈ X1,n,

µ1,n (B(x, r)) > min{arb, 1},
meaning that µ1,n belongs to PM,a,b.

The probability measure µ0 is absolutely continuous with respect to µ1,n

and the density of µ0 with respect to µ1,n is p0,n := n
n−11{x}. Then

TV(µ0, µ1,n) =
1

2

∫
M

∣∣∣∣1− n

n− 1
1{x}

∣∣∣∣ dµ1,n =
1

n
,

so that (1− TV(µ0, µ1,n))n =
(
1− 1

n

)n → e−1 as n goes to infinity.
It remains to compute db(dgm(Filt(X0)), dgm(Filt(X1,n))). For both X0

and X1,n, notice that the diagrams induced by the Rips and Čech filtrations
are equal and that these diagrams are non-trivial only for the 0-dimensional
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homology. Furthermore, dgm0 (Filt(X0)) is the singleton {(0,+∞)}. On the
other hand, dgm0 (Filt(X1,n)) = {(0,∞), (0, ρ(x, xn))}. Thus,

db(dgm(Filt(X0)),dgm(Filt(X1,n))) = min
p∈∆
‖p− (0, ρ(x, xn))‖∞

=
ρ(x, xn)

2
.

The proof is then complete using Le Cam’s lemma (Lemma 6.5). �

7. Persistence Landscapes

Persistence landscapes have been introduced in [Bub15] as an alternative
representation of persistence diagrams. This approach aims at representing
the topological information encoded in persistence diagrams as elements
of an Hilbert space, for which statistical learning methods can be directly
applied.

7.1. Construction. The persistence landscape is a collection of continu-
ous, piecewise linear functions λ : N× R→ R that summarizes a persistence
diagram dgm (see Figure 7). The landscape is defined by considering the
set of tent functions at each point p = (x, y) =

(
αbirth+αdeath

2 , αdeath−αbirth
2

)
representing a birth-death pair (αbirth, αdeath) ∈ dgm as follows:

Λp(t) =


t− x+ y t ∈ [x− y, x]

x+ y − t t ∈ (x, x+ y]

0 otherwise

=


t− αbirth t ∈ [αbirth,

αbirth+αdeath
2 ]

αdeath − t t ∈ (αbirth+αdeath
2 , αdeath]

0 otherwise.

b

d d+b
2

d+b
2

d−b
2

λ(1, ·)

λ(2, ·)

λ(3, ·)

Figure 7. An example of persistence landscape (right) as-
sociated to a persistence diagram (left). The first landscape
is in blue, the second one in red and the last one in orange.
All the other landscapes are zero.

The persistence landscape of dgm is a summary of the arrangement of the
tents display obtained by overlaying the graphs of the functions {Λp}p∈dgm.
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Definition 7.1 (Landscape of a Diagram). The persistence landscape of a
diagram dgm is the collection of functions, indexed by k ∈ N, and defined
by

λdgm(k, t) = kmax
p∈dgm

Λp(t), t ∈ [0, T ],

where kmax is the kth largest value in the set; in particular, 1max is the
usual maximum function.

Given k ∈ N, the function λdgm(k, .) : R→ R is called the k-th landscape
of dgm. It is not difficult to see that the map that associate to each per-
sistence diagram its corresponding landscape is injective. In other words,
formally no information is lost when a persistence diagram is represented
through its persistence landscape.

The advantage of the persistence landscape representation is two-fold:

(i) Persistence diagrams are represented as elements of a function space,
opening the door to the use of a broad variety of statistical and data
analysis tools for further processing of topological features.

(ii) Second, and fundamental from a theoretical perspective, the persistence
landscapes share the same stability properties as persistence diagrams
(see Section 5).

Proposition 7.2 (Basic Properties of Landscapes). For all k > 0,

(i) λdgm(k, ·) > λdgm(k + 1, ·) > 0,
(ii) λdgm(k, ·) is 1-Lipschitz.

Proof. See [Bub15, Lemma 4]. �

7.2. Stability. From the definition of persistence landscape, we immedi-
ately observe that λ(k, ·) is one-Lipschitz and thus similar stability proper-
ties are satisfied for the landscapes as for persistence diagrams.

Theorem 7.3 (Stability of Landscapes). Let dgm1 and dgm2 be two q-tame
diagrams. Then for all k > 0,∥∥λdgm1

(k, ·)− λdgm2
(k, ·)

∥∥
∞ 6 db(dgm1, dgm2).

Proof. See [Bub15, Theorem 17]. �

Remark 7.4. In particular, Theorem 7.3 allows to derive a stability result
for landscapes associated to:

(i) filtrations of functions, from Theorem 5.7;
(ii) Rips and Čech filtrations of a metric space, from Theorem 5.9.

7.3. Central Tendency for Persistent Homology. The space of persis-
tence diagrams being not an Hilbert space, the definition of a mean persis-
tence diagram is not obvious and unique. One first approach to define a
central tendency in this context is to define a Fréchet mean in this context.
Indeed it has been proved in [TMMH14] that the space of persistence dia-
grams is a Polish space. However they are may not be unique and there are
very difficult to compute in practice. To overcome the problem of compu-
tational costs, sampling strategies can be proposed to compute topological
signatures based on persistence landscapes. Given a large point cloud, the
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idea is to extract many subsamples, to compute the landscape for each sub-
sample and then to combine the information.

We assume that the diameter of M is finite and upper bounded by T
2 ,

where T is the same constant as in the definition of persistence landscapes
in Section 7.1. For ease of exposition, we focus on the case k = 1, and set
λ(t) = λ(1, t). However, the results we present in this section hold for k > 1.

For any positive integer m, let X = {x1, · · · , xm} ⊂ Xµ be a sample of m
points from µ. The corresponding persistence landscape is λX and we denote
by Ψm

µ the measure induced by µ⊗m on the space of persistence landscapes.
Note that the persistence landscape λX can be seen as a single draw from
the measure Ψm

µ . The point-wise expectations of the (random) persistence
landscape under this measure is defined by EΨmµ [λX(t)], t ∈ [0, T ]. The

average landscape EΨmµ [λX ] has a natural empirical counterpart, which can
be used as its unbiased estimator. Let Sm1 , . . . , S

m
` be ` independent samples

of size m from µ⊗m. We define the empirical average landscape as

λm` (t) =
1

b

b∑
i=1

λSmi (t), for all t ∈ [0, T ],

and propose to use λm` to estimate λXµ .

Remark 7.5. (i) Note that computing the persistent homology of Xn is
O(exp(n)), whereas computing the average landscape is O(b exp(m)).

(ii) Another motivation for this subsampling approach is that it can be also
applied when µ is a discrete measure with support XN = {x1, . . . , xN} ⊂
M . This framework can be very common in practice, when a continuous
(but unknown measure) is approximated by a discrete uniform measure
µN on XN .

The average landscape EΨmµ [λX ] is an interesting quantity on its own,
since it carries some stable topological information about the underlying
measure µ, from which the data are generated. In particular, we can compare
the average landscapes corresponding to two measures that are close to each
other in the Wasserstein metric. The average behavior of the landscapes of
sets of m points sampled according to any measure µ is stable with respect
to the Wasserstein distance:

Theorem 7.6. Let X ∼ µ⊗m and Y ∼ ν⊗m, where µ and ν are two proba-
bility measures on M . For any p > 1 we have∥∥∥EΨmµ [λX ]− EΨmν [λY ]

∥∥∥
∞
6 2m

1
p Wp(µ, ν),

where Wp stands for the pth Wasserstein distance on M , defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
M×M

ρ(x, y)pπ(dx, dy)

) 1
p

,

where Π(µ, ν) is the set of probability measures on M ×M with marginal
distributions µ and ν,

Proof. See [CFL+15, Theorem 5] �
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Remark 7.7. (i) For measures that are not defined on the same metric
space, the inequality of Theorem 7.6 can be extended, to the condition
of using the so-called Gromov-Wasserstein metric, and writes as∥∥∥EΨmµ [λX ]− EΨmν [λY ]

∥∥∥
∞
6 2m

1
pGWρ,p(µ, ν).

(ii) The result of Theorem 7.6 is useful for two reasons. First, it tells us
that for a fixed m, the expected ”topological behavior” of a set of m
points carries some stable information about the underlying measure
from which the data are generated. Second, it provides a lower bound for
the Wasserstein distance between two measures, based on the topological
signature of samples of m points.

8. Further Sources

These notes mainly follow [CM17], [BCY18] and [CGLM15].
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